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\Rapid melting and solidification of a semi-infinite substrate
subjected to a high intensity heat flux over a circular region on
its bounding surface moving with a constant velocity is considered.
General expressions are developed for the coefficients in the fin-
ite difference equation governing the heat transfer in moving .
orthogonal cuvilinear coordinate systems. These expressions are
reduced to their specific forms in terms of dimensionless nodal
temperature and enthalpy for a moving oblate spheroidal coordinate
system., Quasi-steady state conditions are assumed and the thermal
properties of the substrate in the liquid and solid phase are con-
sidered constant and equal. It is also assumed that the substrate,
pure aluminum used as example, melts and solidifies at a single
temperature. Temperature distributions in the molten region and
the adjacent heat affected zone are computed along with the liquid-
solid interface shape, its velocity and other important solidifica-
tion variables. Both uniform and Gaussian heat flux distributions
within the circular region are considered. The results are present-
ed in their most genera] form — in terms of dimensionless numbers
vhen possible. ec1f1c criteria for the melting of the substrate
are established. It is shown that the three variables, ahsorbed
heat flux g, the #ad1us of the circular region a and the veiocity
of the moving heat flux U, could be combined into two 1ndependent
variables. That is, the dimensionless temperature distribution in
the metal pool and the solid substrate remain the same as long as
the products ga and Ua or U/q are kept constant. The effect of
these variables on cooling rate in the liquid and the ratio of temp-
erature gradient to.growth rate at the solid-liquid interface are
discussed using the aluminum substrate as example.
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I. INTRODUCTION

The availability of high power directed energy sources such

RERLN 5T SR gl

as the electron beam and different types of lasers has led to
the development of a number of new materials processing techniques i
which exploit the unique characteristics of these sources. One

such process, the rapid surface layer melting and subsequent sol-

idification of metallic and semi-conductor substrates, appears

to have tremendous potential applications. In two recent papers

(1,2) we addressed the one and two dimensional transient heat

| flow problems during rapid melting and solidification of the sur-

| face of a semi-infinite substrate subjected to a high intensity
stationary heat flux on its bounding surface. 1In the present
investigation we extend the earlier findings to three-dimensional
heat flow on the surface of a semi-infinite solid subjected to a
moving heat flux. It is anticipated that the equations and sol-
ution method developed would be equally applicable to other met-
allurgical processes such as arc welding.

In general, most experiments with a directed energy source,
such as the continuous wave CO2 laser, involve scanning of the
source over the surface of the substrate.. Analytical solutions
to simple moving heat source problems have previously been con-
sidered by Rosenthal (3). His analysis is for a solid substrate
which does not undergo a phase change. It is based on the notion
that if the dimensions of the substrate are large with respect
to the moving source, then the system approaches a quasi-steady

state; steady state prevails from the standpoint of an observer

| located in and travelling with the source. The analytical solutions i




of Rosenthal (3) have been extensively used in metallurgical
processes such as welding and surface hardening. However, these
solutions are only accurate at large distances from the source
and can not address the complex problem of melting and solidifi-
cation which is the subject of this investigation.

"In this paper we extend the mathematical technique developed
and used in the previous two-dimensional transient heat flow
problem (2). The oblate spheroidal coordinate system is used
again, however, the mathematical expressions and computer method-
ology developed assume the existence of quasi-steady state while

the coordinate system is in motion.




II. PROBLEM STATEMENT AND SOLUTION APPROACH

We consider a high intensity heat flux over a circular
region on the bounding surface of a semi-infinite solid moving
with a constant velocity, U, in the y-direction in cartesian
coordinate system, Figure 1. The absorbed heat flux is high
enough to cause melting and subsequent solidification of the sur-
face layer. Temperature profiles in the molten region and the
adjacent heat affected zone, as well as the important melting and
solidification variables of the surface layer are to be determined,
The analysis is based on the assumption that a quasi-steady state
is established, which is to say that the system appears to be
steady state as viewed by an observer located at the center of
the circular region and travelling with the heat source. We thus
transfer the coordinate system from the semi-infinite solid to the
center of the heat source. The surface outside the heated region
is considered adiabatic. The thermal properties of the solid and
the 1%quid phases are considered to be constant and equal to one
another. Finally, it is assumed that the workpiece melts and sol-

idifies at a single temperature.

.

The generalized expressions previously derived ( 4 ) for
the determination of the coefficients in the finite difference
equations governing the stationary heat transfer problem within
discretized spatial domains are extended to account for the
motion of orthogonal curvilinear coordinate systems. These ex-
pressions are then reduced to their specific forms for a moving
oblate spheroidal coordinate system which is a "more natural"

coordinate system for this problem geometry. The finite
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difference equations are rewritten in terms of dimensionless
nodal enthalpy and temperature, in a manner similar to that
previously described (2,6), to permit numerical solution of

the multidimensional, discrete temperature-phase change prob-
lem. In this way, both dimensionless temperature and enthalpy
are used to formulate a single energy conservation equation for
each discretized spatial domain regardless of whether it is in
the solid state, the liquid state or contains the liquid-solid
interface. Finally, the quasi-steady state temperature distri-
butions in the molten region and the adjacent heat affected
zone are computed along with the quuid-solid interface shape,
its velocity and other important melting and solidification var-

iables.
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II1. MATHEMATICAL DESCRIPTION

The generalized form of the heat condiction equation in
stqtionary orthogonal curvilinear coordinate system (u]. Ugs u3)
has previously been derived. For a volume element moving in
space with velocities Vis Vo and vy this expression can be ex-
panded to include conduction of heat in and out of the volume

element due to motion:

k. h h k.h
3 1" a7 3 koh 31 3 3" a7
Sus L ZW]"au[Zau]"au[ 23u]
1  h 1 2 2 3
1 hy hy
(1)
= 9 - h aT h aT h
+ P.ho= 5% (hoC,T) pcp[}ﬁ"l du; " hy, Y2 30, " h, V3
aT
2L
8u3

Where the scalar factors (metric coefficients) relating the
curvilinear coordinate system to the cartesian system are those

previously defined ( 5):

1,2,3 (2)

)2+ () |

u . .
1 1

/(3)( )2 4

and : :
The velocities in the two coordinate systems are related by
(3)
L (¥ AT ( )v ( )v 5 (4)
Y i 3u i i z
1= 1,2,3

*A11 the terms in the equations are defined in the Nomenclature,
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The arc lengths, areas and the volume of the element in the

curvilinear coordinates are related to the cartesian by:

= 2 i = 5)
ds. = h.du, : i=1,2,3 (

- w.du s f.d.k = 1,2,3 6
dA; = hshy dugduy 1,J , (6)
dV = h du; du, dug (7)

Finally, P in equafion (1) denotes source strength per unit
volume.

Taylor series expansion of equation (1) about an arbitrary
discretized domain in space centered at a node at (i,j,k) can
now be carried out to put the equation in finite difference form.
The subscripts i,j and k indicate the finite discretization of
space in the Uys U, and ug directions, respectively. The change
in respective coordinate values between successive nodes are
Au] Au2 and Au3. If terms of the order of Au3 and higher are

neglected, the following expressions are obtained.

k,h + T, -2T

o har g B T, gt Tia sk g0k
~ 2
T2k
(8)
R MY B I ISl 5 I Y
au] hz ZAU]
1 4,3,k
P.h = [P.h]i’j’k . (9)
T T 0
(pCpT) 4 5k = (PCRT)4 5k (10)

) -
1,3,k
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where the superscript % refers to the previous time level.

T . - T
i+1,§,k i=-1,3,k
il [ JéAu] =]

1,3,k (11)

9T - h
PCy FT vy 3;; Dcp y

Similar expressions to (8) - (11) are then written for u,

and uj. Substitution of all the finite difference approximations

in equation (1) yields the coefficients to the various nodal

temberatures:
‘kqh k,h c ﬁv
] ] ) ] 1 PLp Yy ) P
N = ( ) - ( 1"]’ ’k
[h% Au?r 2Au.| au, ;?_ 2Au] 51 ) J
isd,k
k,h k,h C.hv, -
2 ] ) 2 1 e 2 T
+ [ - ( )~ (P i,3-1,k
héaul 28uy du, ' 2 2Au, h, % J
2842 2 ..
isJsk
A P LI R ( kzh y o ] °°p""3)] .
i.dsk
kqh k,h C.hv
1 1 ? 1 1 PL5M Yy
+ [_2_‘2' * 2aas aur (T2t mar )] Tie1,5.k
h$Au 1 9% " n 1 1
1% 1 §.5 0k
K., h K. h oC_hv (12)
+ [ 2oy + e 5as () * gp (—h 2)] Ti,541.k
h58u5 2 °Y2 "h; 2 2 2371
i,Jsk
\ r ;3h X 2] 3 ( kgh ) s 1 ( pCphV3 ) -
h3A“§ Au3 8u3 h3 2Au3 h3 1,5 k4]
- 1,3,k
[ : ksh koh  kgh ) hoC,,
+ -2 57 + -5+ - (—-—-——) T. .
2 2, 2 2, 2 At 1,3,k
i h]Au] thu2 h3Au3
i,dsk 1,3,k
hpC _
slph o+ (2| =0
L

i,J,k
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Application of the general expression (12) to a moving
oblate spheroidal coordinate system located at the center of
the heat flux and travelling with the source is now considered.
The cartesian and the oblate spheroidal coordinate systems are
shown in Figure 2. The heat flux is applied over a circular
region of radius a in the x-y plane and is travelling in the

y-direction with constant velocity U.

Y (13)

The thermal properties are considered to be uniform iso-

tropic and equal for the solid and liquid phase. Quasi-steady

state conditions are assumed — terms involving time in equation{12)

are zero.
The relationships between the cartesian and the oblate

spheroijdal coordinates are:

X = a coshn sin& cos¢
y = a coshn Sing sin¢ : (14)
Z = 3 sinhn cosg

The control volume is centered about an arbitrary point
(i, j» k) in space and is moving with a velocity U in the pos-
itive y-direction. i, j and k indicate the finite discretiza-

tion of space in the n,£ and ¢ directions, respectively.

u,l 1, u2 =

t

[ ]
-

=4
w

"

o

v v v (]5)
17 e 27 e 37 Y

"
<

h



The scalar factors (metric coefficients) for the oblate

spheroidal coordinates determined from equations (2) and (14) are:

= = 2 _ T2
hn hE av/cosh*n sin‘g

h¢ = a coshn sing (16)

> 2t i il

= = 3 2 - s 2 .
h hn'hE'h¢ a“(cosh?n sin2g) coshn sing

The interrelationship between vector components (velociti:s)

in the two coordinate systems from equation (4) are:

= 1 (3 1 ,3y 1 .9z
vo = (SR v v G vy, t o GR) Y
n hn on X hn on’ 'y h, “an z
- 3xX 1 3y 1 (3z
Vg T he (38) vy * he (38) vy # he (58) V2 (an

1 sax 1 3 1 (92
Vo K(ﬁ) v, + By (53) vy o+ g (55) Vs

Substituting equations (14), (15) and (16) in equation (17)

and performing the indicated operations yields:

vn = | sinhn sinE sind
/cosh?n - sin?E

VE = U coshn €0SE sind (18)
Ycosh*n - sin‘g .

v¢ = | cos¢d

The scalar factors (16) and the velocity components (18) are
now wused in the general expressions for the finite difference

coefficients (12). Once the appropriate operations are carried out

expression (12) can be put in a more useful form for the problem

at hand.




10

s Tiaok T % T, 5,0 " C2 Tiwn, 5,0 " B3 Ty 5o,k Y Ca Ty sek t
s Ti,3.k-1 % % Ti,5,001 = C2 Ticn 5,6 * C8 Tien 5.k -
9 Ti,5-1.k* Cro Ta,ae0,6 7 C91 TiLker F G2 T ke
Paz(coshzzi - sinzgj) (19)

The coefficients in equation (19) are:

C,2°°
C3,4 °
Cs 6 =
¢, = Cg =
Co = Cyo ~
€117 &2 =
. L8
=1 ¢

In the above each coefficient has been divided by (ak coshn,
i

sinEj AnAEAG).

The finite difference representation of the heat conduction

equation can now be put in its equivalent enthalpy form using a

modified version of previous notation {( 2 ) for dimensionless nodal

1 1
En? § 2an 0y

1 o cotE
AE” 28E i

] (coshzni - sin’gil (20)
A$*?

2 s .2
cosh n; sin gj

aUpC . . 'Y
??_K% s1nhni s1n£j s1n¢k

alpC

7% BE coshni cosgj sing

2. _ cin2
aUpCp (cosh2n; s1nAEj)
2k A

cosd
coshni singj

2 e ein2
(cosh n; s1n4Ej)

1

2 Sl
cosh n; sin gj

k
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enthalpy, y, and dimensionless nodal temperatire, §. These two

dependent variables are defined as:

. . H - H
Vo= BV'& p (H - H) dv = BT,
E”sz (21)
e=cj (T - 1))
AHS2

In general H in equation (21) refers to the specific enthalpy
of the discritized space volume and assumes different forms when
the node is in the liquid, the solid or the liquid-solid region.
H: is the specific enthalpy of the solid at its melting point.

In the solid region the dimensionless nodal enthalpy, ¢, is
negative and is equal to the dimensionless nodal temperature:

c, (T-7

)
w=e=pAH2M<0 (22)
S

In the superheated liquid region:

C, (T - Ty
R i LI W (23)
)

A discretized space volume containing the liquid-solid inter-

face is at the melting point of the material:
0 v<1.0 and 6 =0 (24)

The value of ¢ is equal to the weight fraction of the element

unich is in the Tiquid state, Fl'
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The appropriate forms of equation (21) for a discretized
space domain in the solid or liquid region, equations (22) or (23)
are substituted into equation (19). After some manipulation and
multiplication by different factors for the following common equa-

tion is obtained for both the solid and the liquid.

|
E Cs YiLik = C1 ¥icn,ik Y Q2 Vi, 5,0 G Vi, B Y5k
- ¢, ®
\ t 05 %,k % %,k 7 € Yo,k
|
1 6 -
| *Cg %a1,5,k 7 C9 %, 5o1,6 t Cro GiLgerk
- (25)
-Cyy GLa,k-1 T G285, kn
“. 2 2 . 2
+ Pa“(cosh n; - sin Ej) . Cp

The coefficients C] to C]2 and CS are those defined in ex-
1 pressions (20).

An alternate approach to the general formulation of the prob-

lem developed here, which resulted in equations (19) and 20), is to
apply an energy balance to an arbitrary moving control volume of

finite size with a total source strength PAV centered about node

i,j,k in oblate spheroidal coordinates. This approach, described
in detail in the Appendix, is very useful because; (a) it verifies
the general formulation of equation (1) developed in this investi-
gation, and (b) it renders improved physical interpretations of the

various conefficients derived for equations (19) and (20) and the

boundary conditions described in the next section.
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IV. BOUNDARY CONDITIONS AND SOLUTION OF

THE FINITE DIFFERENCE EQUATIONS

The boundary conditions are derived based on the following
assumptions.
The absorbed heat flux in the circular region of the bound-

ing surface (z = 0, x-y plane) is in general a function

of distance and time, q=q(r,t) where r = VxZ+ yZ, In this i

paper the problem is solved for the two special cases of
uniform and Gaussian distributions of the absorbed heat
flux within the circular region. Equation (25) is then

subject to the following boundary conditions.

aT

= T 2=

rof =

The first node at this boundary is at i = 1, n - %?, there-
fore, the surface locatedat i - 1/2 is coincident with this boun-

dary of symmetry:

Qiov/2,5,k 0 , C,=0 (27)

i=1

Similarly, the top surface is parallel to the moving direc-
tion, hence:

C, =0 (28)

In general, the heat flux in the circular region on the bound-
ing surface is incorporated in the term involving P in equation

(25).

E.+AE/2 d+Ap/2
%U J 12 q(g) sin(2g) de.s Ad% (29)
.~A -
p - rate of heat generated _ gJ ; ¢-00

unit volume

AV




where AV is the volume of the discretized space domain.

AV = hAnAEAd = a’(cosh’ni - sinzgj)coshni sinngnA§A¢ (30)

For_case (a) gq = constant

P is calculated from equations (29) and (30). Substitution of this
finding in the last term of equation (25) leads to the following

expression: .

a q cos;j sin(Ag)

k coshniAnAg AHSQ (31)

- 1 2
For case (b) g =g, e 2 sin E; (32)

and the last term of equation (25) becomes:

-ZSin’(Ej-%§)_e-2 sin2(£j+%§)] c
B
s

qoa[e

4k coshn, singj AnAE

II. n>0,0gEgn/2, &=-5/2, %% =0, P =0 o
(the negative y portion of the y-z plane, x = 0) (34) i

Because of problem symmetry about the y-z plane the plane defined
by ¢=-m/2 will represnet a zero flux boundary. Since the first
node at this boundary is at k = 1, ¢] = A¢p/2, then the surface
located at k - 1/2 is coincident with this boundary of symmetry:
Qi,5,k-172 . Cg =0 (35)
k=1
Similarly, this surface is parallel to the moving

direction; hence:

C,y = 0 (36)




n>0, 0k ¢=+5 3 =0,P=0 (37)

(the positive y portion of the y-z plane, x=0)

By using a similar reasoning to that given above we must set

C6 = 0 s C12 = 0 (38)

IV. = n->w, 0<E&<mn/2, -1/2<¢<u/2 , P=0 (39)
Far away from the circular region (for the problem at hand,

n~+ 10):

)

-C Ty = T
- p ( M o (40)

i,d.k - Vi,ik T AH

0
s2

V. n>0, £=0, P=20 (41)
(along the z-axis, x = 0, y = 0)

The area of the surface located at j - 1/2 along this

boundary is zero:

; C3 = 0 , Cg =0 (42)
’ VI. n>0, £=1/2, -m/2<¢<n/2, P=0 (43)
é The surface on the x-y plane outside the circular region

is adiabatic:

i, 5+1/2,k (44)

Jj=Max

1l
o
-
(@]
t
o

The top surface is parallel to the moving direction, hence:

Cin =0 (45)

10

The system of quasi-steady state algebraic equations,
equation (25), in the moving oblate spheroidal coordinates

were solved using an iterative method. The computer logic

T ke aciwr ek
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presented below closely follows that previously described

for the two-dimensional transient heat flow problem for
stationary heat flux applied in the circular region on the
surface of a semi-infinite solid (2). However, the quasi-
steady state nature of the problem has eliminated time deriv-
atives from the heat flow equation.

The solution is started by initially assigning a temper-
ature of To to the semi-infinite solid. Then, by using equa-
tions (22) to (24) the left hand side, L.H.S. of equation (25)
is calculated using the boundary conditions by repeated point iter-
ation throughout the mesh in a definite order a number of times
until the convergence criteria is met. The following logic is
used in the sequence of calculations.

If wi.j.k < 0 the element is in the solid and right hand

side, R.H.S., of equation (25) is less than zero.

Yi,i.k © 5%55_ (46)
As the calculation is repeated for the next nodal point,
the value of 9 in the previous nodal point in the mesh is set
equal to that calculated from equation (46). On the other hand,
if 0 ¢ wi,j,k ¢ 1.0 the element contains the liquid solid inter-
face and the value calculated from equation (46) gives the
fraction of 1iquid in the volume element. The value of ¢ for

this nodal point is set equal to zero in the next iteration step.

Finally, if wi ik

uid region and the values of ¢ and of 6 for this nodal point

> 0 the element is in the superheated lig-

become that given by equation (23).

The convergence criteria is tested by comparing the new




value of wi .k with the old guess value:

¥i,5.k (newd- vy gy (o1d)} < 10

4

(47)
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V. RESULTS AHD DISCUSSION

The equations and the computer logic developed were used to
calculate the quasi-steady state temperature distribution in an
aluminum*substrate subjected to both uniform and Gaussian moving
heat flux distributions. The results are presented in their most
general form, in terms of dimensionless numbers when possible,
in order to establish general trends between the process vari-
ables and the important melting and solidification parameters.

The sequence of the presentation is as follows. First, the
steady state temperature distributions due to a stationary heat
flux acting over a circular region of radius a are discussed and
the results are compared with the transient heat flow calculations
' of the previous paper (2). It is shown that the criteria developed
earlier, between the product of the absorbed heat flux and the
radius of the circular region ga and the steady state temperature
at the center of the circular region, are equally applicable to
the problem on hand. A significant departure from the earlier (2)
calculations is the assumption that the conductivities of the
liquid and the solid phases are equal. The effect of this assump-
tion on the steady state temperature distributions is discussed.
Second, the effect of moving the heat flux in the y-direction with
a dimensionless velocity Ua/2c on the temperature distributions §
and the solidification parameters are discussed in detail for both

uniform and Gaussian heat flux distributions.

*The properties of aluminum used in the calculations are listed
in Table I.




1. Steady State Temperature Distributions
Stationary Heat Flux

Figure 3 shows a general plot of the data obtained in the previous
study (2). The curve associated with the vertical axis on the
right side of this Figure shows that there is a minimum product
of gqa required if the center of the circular region on the surface
of the substrate is to reach a given temperatufe, e.g. the vapor-
ization temperature of the substrate. That is, for very small
values of a/2/at, long interaction times, the temperature at this
location approaches its maximum steady state value. Again, the
term AHsz/Cp in the numerator on the right hand vertical axis of
Figure 3 denotes the equivalent temperature change for the melt-
ing of the substrate.

For the aluminum substrate, the minimum values of ga = 1.45 x
105 W/m and ga = 2.3 x ]05 W/m are deduced from Figure 3 for a
solid surface temperature T7(0,0,0) = TM and for the initiation of
surface melting, respectively. These values are identical to
those of the previous calculations (2). On the other hand, the
minimum value of gqa = 6.4 x 10° W/m deduced for the center of the circular
region to reach the vaporization temperatdre is larger than that
calculated earlier because the assumed higher conductivity of the
liquid permits faster diffusion of heat away from the heat source.

Figure 4 shows the effect of different thermal conductiv-

ity values on the location of the liquid-solid interface when

steady state prevails. Note that a higher liquid conductivity,
while the conductivity of the solid remains the same, results in
a larger metal pool, higher qa value, if the center of the circu-

lar region is to reach the vaporization temperature.
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The steady state temperature distributions of a stationary
heat source are of interest because this is the problem geometry
as the velocity of the moving heat source approaches zero, Fig-
ure 5 shows the shape and location of several isotherms, includ-
ing the liquid-solid interface, in an aluminum substrate for two
different values of the product ga. These are steady

state isotherms and the center of the circular region has

reached maximum temperatures T, and 2130K for ga = 6.4 x 10°

W/m and ga = 5 x ]05 W/m, respectively. The temperature distri-
butions remain the same in these dimensionless plbts for all
values of g and a as long as the product gqa is kept constant.
Figure 6 shows the effect of increasing the product ga on
the steady state location of the liquid-solid interface. The
associated maximum temperature at the center of the circular
region is listed on each curve. The melt pool becomes deeper

and hotter as the product of the uniform absorbed heat flux and

the radius of the circular region increases. Furthermore,
ratio of the melt width to the melt depth is larger than one
and increases with decreasing value of the product qa.

Figures 7 and 8 show the actual temperature distribu-
tions in the melt pool and the solid along the z-axis and on the
z = 0 plane, respectively. As anticipated, temperature gradients
along the z-axis increase with increasing values of the product
qa and decrease with increasing distance from the surface of sub-
strate. On the other hand, symmetry on the z=0 plane requires a
zero temperature gradient with respect to the x or the y axis at

the center of the circular region. Note that the temperature




\

AN 21

gradients at the edge of the pool on this plane increase with
decreasing values of the product gqa. This information will be
of interest when relationships between cooling rates and process

variables are discussed in the moving heat flux problem geometry.

2. Quasi-Steady State Heat Flow —
"~ Moving Heat Flux

A. Uniform Heat Flux

An important initial finding of this investigation was that
thg three variables, absorbed heat flux g, the radius of the cir-
cular region a and the velocity of the moving heat flux U, could
be combined into two independent variables. That is, the dimen-
sionless temperature distribution in the 1iquid metal pool and the
solid substrate remain the same as lTong as the products ga and Ua
or U/q are kept constant while the individual values of the three
variables are varied. Consequently, the data is presented herein
in a general form, covering a large range of process parameters,
in terms of the product ga or U/q and the dimensionless variable
Ua/2a.

Figure 9 shows the dimensionless temperature distribution
along the y-axis for different values of gélgg. For small val-
ues of Ua/2a ~0.003 the heat flux is moving very slowly across
the substrate in the y-direction and the temperature distribu-
tions are almost, but not exactly, identical to those shown in
Figures 5 to 8. That is, there is little distortion of the
melt pool and it remains almost symmetrical as it travels across

the substrate. On the other hand, increasing the dimensionless

velocity results in increasing distortion of the metal pool — the

b A v




maximum temperature along the y-axis shifts toward the tail end

of the pool. The data in Figure 9 permits determination of temp-
erature distribution along the y-axis for a wide range of process
variables. For example, for a radius of the circular region

a = 400um and ga = 6.4 x 109

W/m the maximum temperature reached
at steady state, U = 0, was the vaporization temperature of alum-
inum, The maximum dimensionless velocity ggigg ~1.0 in Figure 9
translates into an actual velocity of ~ 0.42 m/s, a temperature

T(0,0,0) ~2400K and a maximum temperature, displaced from the center

of the circular region, T = 2540K. Changing the product ga to

max
4.1 x 105 W/m while Ua/2a is kept constant, results in a signifi-
cant reduction in the temperature at the origin T(0,0,0) ~1510K —
compare this with the steady state value of 1730K in Figure 6.
Examples of the shape and location of several isotherms,
including the liquid-solid interface, for given values of the
products ga and Ua/2a are shown in Figures 10 and 11. Figure 10
shows a side view, plane x = 0, while Figure 11 shows a top view,
plane z = 0. The dimensionless Qe]ocity Ua/2a = 0.75 would, for
example, translate into actual velocities of 0.1 m/s and 1 m/s for
radii of the circular region of ~1260um aﬁd v126um, respectively.
The corresponding absorbed uniform heat fluxes that result in ga =
6.4 x 105 W/m are g ~ 5.1 x 108 W/m2 and g v 5.1 x 109 W/mz,
respectively. Figures 10 and 11 also show significant shifts in
the geometry of the isotherms to the trailing end of the moving
heat source, Also, the isothermal surfaces become increasingly
distorted with increasing temperature in the liquid metal pool. A

better indication of these observations can be noted in Figure 12.
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This Figure shows composite views of the isotherms in Figures 10
and 11 along with side and top views of the isotherms when the
product ga is the same but the heat source is not moving — the

steady state temperature distributions when no further melting or

solidification occurs. It is interesting to note that due to the

‘ high conductivity of the aluminum substrate the distortions in the ;
': isotherms are not nearly as pronounced as those expected in lower
! conductivity materials such as iron or nickel. This point was
clearly demonstrated in the moving point sourcecalculations of
Rosenthal (3).

Figures 13 to 16 show the effects of changing the variableﬁ

{ qa and Ua/2a on the geometry and location of the liquid-solid inter-

] face — the liquid pool. First, it is evident that there is little
distortion of the pool at low velocities. Second, increasing
the product Ua/2a results in a corresponding decrease in maximum
pool depth. Third, the geometry of the pool is more speherical

Q at higher products of ga - its width to depth ratio increases

with decreasing values of gqa. Finally, shallower pool geometries

i are less affected by changes in the dimensionless velocity.
The effect of changes in the values of ga and Ua/2a on the

§ cooling rate in the liquid at the solid-liquid interface, GL'R*’

and the variation of this cooling rate along the different axes of
the cartesian coordinates are shown in Figures 17 and 18.

These are calculated cooling rates during solidification of

the trailing half of the metal pool. Heating and cooling rates

from the point of view of a stationary observer located anywhere

*GL and R are the temperature gradient in the liquid and the solid-
1iquid interface velocity perpendicular to the metal pool surface,
respectively.
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in the heat affected zone of the substrate can similarly be deter-
mined. The cooling rate, EL;E’ can be alternatively described as
the product of U.3T7/3y, where 3T7/3y is the y-component of the temp-
erature gradient in the liquid at the liquid-solid interface. The
cooling rate is a maximum along the y~-axis and its value for a
given radius of the circular region increases with increasing val-
ues of the ratio U/q. This is clearly evident in the plots of Fig-
ures 17 and 18 — note the values of G *R x a? at z/a = x/a = 0.
This fact can also be deduced from the steady-state temperature
distributions in Figure 8. The temperature gradients at the solid-
1iquid interface increase with decreasing values of uniform absorbed
heat flux g.

For given values of ga and Ua/2a the cooling rate continuously
decreases toward the edges of the metal pool, Figures 17 and 18.
This is expected since both the temperature gradient in the y-direc-
tion and thesolid-liquid interface velocity perpendicular to itself reach
a finite but minimum value at these locations. Examples of cooling
rates that are readily calculated from these Figures are as follows.
Assume a uniform heat flux of q = 1.2 x 10° W/m2 absorbed over cir-
cular region of radius a = 250um is moving with a velocity U~ 0.5
m/s, ga v 3 x 10° W/m and Ua/20 n 0.75. The calculated cooling
rates from Figures 17 and 18 at y/a = 0, x/a = 0.8 and z/a = 0.4
are n 9 x 106K/sec, v 3.7 X 106K/sec and v 8 x 104K/sec, respec-
tively.

The ratio of the temperature gradient in the liquid at and
perpendicular to the solid-liquid interface divided by the solid-

liquid interface velocity perpendicular to the melt pool during

»2lidification, GL/R’ is a measure of the stability of a planar
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interface and its progressive breakdown into cellular and dendri-
tic solidification modes. This parameter is plotted versus the
z/a and x/a axis for different values of the variables ga and
Ua/2a in Figures 19 and 20, respectively. The data clearly indi-

cate that the minimum GL/R value consistently occurs along the

centerline of the moving pool on the y/a axis. The interface vel-
ocity at this location is in the y-direction and assumes its maxi-
mum value of U. The temperature gradient GL in this location

increases with decreasing values of the ra;?b U/q, increasing uni-
form absorbed heat flux, for reasons already discussed. Therefore,

the ratio G /R along the y-axis increases with decreasing g and

increasing velocity U.

It is important to note that as one moves along the back of

the pool on the y = 0 plane from z/a = 0 toward the bottom of the i
pool the interface velocity vector both rotates and changes in
magnitude — it starts out at its maximum value of U pointing in
the positive y-direction and continuously decreases to its
minimun, small but finite, value at the maximun pool denth

pointing almost in the negative z-direction., It is thus clear

why the GL/R increases with increasing distance down the back

of the pool, increasing z/a, and assumes its maximum value at the
maximum pool depth, Figure 19.

In a similar manner, simultaneous rotation and decrease in
magnitude of the interface velocity vector occurs in the z = 0

plane as one moves from the back to the side of the pool. This

explains the increasing GL/R values with increasing distance along

——

x/a in Figure 20.




Finally, in both Figures 19 and 20 the value of GL/R decrezses

with increasing ratio of U/q at constant a or increasing ga at con-
stant Ua/2a. These trends are readily explained by following the

same reasoning as that presented above for the cooling rate. 1

T MIN o TEORT st Tty mmemmee e

B. Gaussian Heat Flux

The effect of changing the heat flux distribution from a top

W TSt e e E

hat (uniform) to a Gaussian was investigated. As previously noted, (2),
if the total absorbed power in the circular region, Q, is identical

for the uniform and the Gaussian heat flux distributions, then the

following relationship is readily deduced:
9%
Qniform = 2.313 (48)

where 9 is the absorbed heat flux at the center of the circular

region in the Gaussian distribution.

Examples of calculated liquid-solid interface locations for
the Gaussian heat flux distributions are shown in Figures 21 and 22,
The productqoa/2.313 N 4,65 x 105 W/m resulted in a maximum steady
state T7(0,0,0) = Tv for the case of a stationary heat source. This
value is lower than that for the uniform heat flux due to the high
concentration of absorbed power at the center of the Gaussian dis-
tribution. The 1liquid-solid interface for small values of the
dimensionless velocity Ua/2a is symmetrical in both the y = 0 and
z = 0 planes, Figures 21 and 22, respectively. For a given temp-
erature in the center of the circular region the metal pool is
shallower for the Gaussian heat flux distribution — compare the

solid curve for Ua/2a ~ 0.03 in Figure 21 with the curve for
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qa = 6.4 x 105

for the same dimensionless velocity in Figure 13,
This is expected since the total power absorbed in the Gaussian
distribution is lower.

Decreasing the product qoa/2.313 results in colder and shal-
lTower melt pools while increasing the dimensionless velocity
shifts the trailing end of the pool toward the negative y-axis.
These observations are in line with previous findings for the
case of uniform heat flux. It was also found that motion of the
heat source has a more pronounced influence on the melt tempera-
tures than in the previous case. For example, increasing the
dimensionless interface velocity to Ua/2a ~ 0.75 reduced the temp-
erature at T7(0,0,0) from T, to ~1600K for the value of qoa/2.313
~ 4.65 x 10° W/m.

Finally, general trends relating cooling rates and GL/R values
are similar to those previously discussed for the case of uniform

absorbed heat flux distribution,

VI. SUMMARY

The three-dimensional temperature distributions in the melt
pool and the adjacent heat affected zone of a semi-infinite sub-
strate subjected to a moving directed high energy source can be
readily determined with the generalized formulation of the heat
flow equation in orthogonal curvilinear coordinates coupled to
an enthalpy model. While numerical computations are presented for
an aluminum substrate subjected to moving uniformand Gaussian
heat flux distributions, the equations developed could be equally
applicable to a range of metallurgical processes previously treated

with the moving point source equation. It is shown that if the two
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independent variables ga and Ua/2a or U/q are specified, the dimen-

sionless temperature distributions in a given substrate material
remain the same. Shortcomings of the model include the use of con-
stant thermophysical prcperties and the fact that convection in the
metal pool is not taken into consideration except by arbitrarily
increasing its thermal conductivity. On the other hand, the gen-
eral trends that can be deduced for a given energy source and sub-
strate material should permit a more systematic approach to the
variation and control of the process variables in order to achieve

the desired heat flow conditions during melting and solidification.

S L i ’
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APPENDIX

An alternate method to the general formulation of the finite
difference representation of the heat conduction equation in moving
orthogonal curvilinear coordinate system, equation (1), is con-
sidered here. In this method an energy balance is applied to a
control volume of finite size in oblate spheroidal coordinates
moving with velocities Var Ve and Ve> see Figure 2. The resultant
energy balance is approximated using finite differences and is
shown to converge to an identical formulation as that given in
equations (19) and (20). This approach is used to both verify the
general formulation of equation (1) developed in this investigation
and to render improved physical interpretation of the various coef-

ficients given in equation (20).

The moving control volume element about a point (;,j,ks is
illustrated in Figure 2. The energy balance for this volume element
having a total source strength of PAV is carried out by considering
the total rate of heat transfer through each surface by conduction
and due to the motion of the volume element.

Let Q and Q~ denote the rate of heat transfer entering or
leaving the volume element by conduction ;nd by motion of the vol-
ume element, respectively. The energy balance for the quasi-steady

state case under consideration is given by:

(Qi172,5,% = QGwrsz, 5,60 * (9 50072,6 - QL 54172,6)

* 0y gk-172 7 QLg,ke172) (a2, 7 Baagz,g,k) (A1)
0 ey, 7 Qi) @y T 8L L k-1y2)

+ PAV = 0




In what follows the values of Q and Q° for the i-1/2 and i+1/2
faces are evaluated as examples. A1l the other terms in equation
(A1) can then be similarly obtained. It is shown that the sum of
all these terms, after appropriate manipulations, results in equa-

tion (19) with the coefficients defined in expression (20).

- -k (Ti - T

. . )
%i1/2,5,k ” 1-1..k

»J.k
(85.)5.1/2

AA (A2)

i-1/2

Appropriate substitutions of equations (5) to (7) and (16) into

equation (A2) and some manipulation gives:

Q'i-]/z,j,k = - C]”i,j,k - Ti-],j,k) akCOShniSirlﬁjAnA€A¢ (A3)
Similarly,
Qyrs2.5.6 = = S20T5e1 5.6 - Ti,j,k) akcoshnisinajAnA£A¢' ~(A“4)

The coefficient C, and C, are those defined in expressions (20).
Similar expressions to (A3) and (A4) are readily developed for the
rates of heat transfer through the other four faces of the volume
element due to conduction.

The rate of heat transfer entering the i-1/2 face due to the

motion of the volume element is:

PCTi 12,5,k Vn AA (AS)

1 =
1'1/29j3k *1_]/2

i-1/2

Substitution of equations (6), (16) and (18) into equation
(A5) gives:

) aUpCps1najsan¢ s1nhni_1/2coshni_]/2

1 - k
Qi-]/?,j,k kan [ Ti-]/Z,j,k] * coshni

(A6)

. akcoshnisinngnA£A¢
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aUpCpsinEjsin¢k ]
®rs2,5,k " K&n (Ti-1/2,5,k) * akcoshngsing AnALA¢
cosh2n.
. 1 éﬂ.
[sinhng - coshn; 5] (A7)
Similarly:
_ aUpCpsin§j51n¢k ]
Bars2,5.k ° Kan (Ti41/2,5,k) = akcoshnysing anacso
cosh2n.
. 1 éﬂ
[S1nhni * coshni 2] (A8)

Subtraction of equation (A7) from (A8) gives:

aUpCpsmgjsmzpk . akcoshnis1n£jAnA£A¢

Uier,i,k - Giory2,5.6 -
sinhni costhi
zan Tie1,g,k 7 Tio1,5.00 * coshny (Ti, 5,6 (AS)

Substituting eauations (A3), (A4), (A9) and similar terms for
the other four faces into equation (A1) and dividing both sides by
akcoshnisinijAnA5A¢
gives an identical equation to expression (19). Note that the sum
of the second terms inside the brackets of eguation (A9), the coef-
ficient to Ti,j,k’ becomes zero in equatibn (A1). This essentially
implies that the sum of the combination of area and velocity terms

multiplied and differentiated with respect to each axis is zero or

pC_hv

2 (=B 1y -9 (A10)

3
L
Bu] h]

T

n=1

which was the a priori assumption made in the derivation of equa-

tion (1).
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NOMENCLATURE
radius of the circular region, m or um
area of the element
integration constant
specific heat, JKg']K']

fraction 1liquid

32

temperature gradient in the liquid at the liquid-

solid interface, Km™ !

scalar factor

specific enthalpy, JKg'1

heat of fusion, JKg']

1 -1

thermal conductivity, Jdm s -

rate of heat generation per unit volume, Wm
2

absorbed heat flux, Wm~
rate of total absorbed heat, W
interface velocity, m sec']
arc length

time, s

temperature, K

ambient temperature, K
melting temperature, K
vaporijzation temperature, K
coordinate axis

velocity of heat source, ms™ )

volume, m3

velocity, ms™

cartesian coordinates

-3




l

a the

rmal diffusivity (k/oC)), mls”]

n,£,¢ oblate spheroidal coordinates

) dim
)] dim

p den

§ubscfigts
1,3,k

ensionless temperature variable
ensionless enthalpy variable

sity, Kg m™3

nodal point subscripts in n and & and ¢ directions,

respectively
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TABLE 1
PROPERTIES OF THE
ALUMINUM SUBSTRATE
C,* = 1067 3 Kg~! k77, specific Heat
AH o = 3.95 x 10° J Kg'], Latent Heat of Fusion
k** = 228 W™ K'], Thermal Conductivity
TM = 933 K, Melting Temperature
Tv = 2723 K, Vaporizati n Temperature
p* = 2545 Kg m3 Density
o« = 8.4 x 10°° mZ sec'], Thermal Diffusivity
* Averaged from 298K to the Vaporization Temperature
**

Averaged from 298K to Melting Temperature
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Schematic illustration of laser beam — substrate
geometry during rapid surface melting and solid-
ification.
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Figure 15. A side view, x = 0 plane, showing the effects of

changing the values of ga and Ua/2a on the shape
and size of the molten region.
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Figure 17. Variation of the product of cooling rate at
the solid-liquid interface and a? with melt
depth along the trailing half of the pool in
the y = 0 plane for different values of the
independent process variables.
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Figure 19, Variation of the ratio Gy /R at the solid-liquid
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of the pool in the y = 0 plane for different val-
ues of the independent process variables.
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Figure 21,

A side view, x = 0 plane, showing the effects of
changing the values of ga and Ua/2a on the shape
and size of the molten region of an aluminum sub-
strate subjected to a Gaussian heat flux moving

with constant velocity U in the positive y-direc-
tion.
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Figure 22.
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A top view, z = 0 plane, showing the effects of
changing the values of ga and Ua/2o0 on the shape
and size of the molten region of an aluminum Sub-
Strate subjected to a Gaussian heat flux moving

vith constant velocity U in the positive y-direc-
tion,







